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We discuss a general procedure to find the coupled motion of a set of resonant transducers attached to a 
spherical GW detector, and present some preliminary results. A new specific proposal for a polyhedric, quasi- 
spherical antenna is also presented. 

1. I N T R O D U C T I O N  

It is widely believed within the community of 
experts in GW detection that  future develop- 
ments in resonant detectors clearly point in the 
direction of spherically shaped antennae. The ex- 
cellence of this shape derives from its omnidirec- 
tionality and its large cross section for GW ab- 
sorption, even at higher resonance modes --see 
[1] and references therein. The spherical detec- 
tor is also particularly well adapted to sense met- 
ric tidal GW excitations, due to the monopole- 
quadrupole nature of the latter in the general 
case  [2]. 

In order to take positive advantage of the 
sphere, however, one has to be able to mount, and 
set to work, a suitable system of electromechani- 
cal transducers, which will amplify the extremely 
tiny oscillations of the antenna's surface, and con- 
vert them to readable output.  Currently working 
bars [3] make use of a resonant transducer, at- 
tached to one of the bar's end faces, whose fre- 
quency is accurately matched to the cylinder's 
first longitudinal resonance. When it comes to a 
sphere, however, a number of complications enter 
the scenario. For example, the quadrupole modes 
of a sphere are 5-fold degenerate, so a minimum 
5 transducers, all tuned to the same frequency, 
are required .to sort out the corresponding am- 
plitudes. A multi-transducer layout is naturally 
more complex than a single transducer one, and 
so new problems have to be solved. 

W. Johnson and S. Merkowitz, from LSU, have 
pioneered in the recent years an idea for a trans- 
ducer layout, so called T I G A  [4], and performed a 

first round of measurements on a prototype model 
[5]. Although excellent agreement between theory 
and experiment is reported by these authors, the 
presence of minor, fine structure, discrepancies is 
acknowledged, too. 

We have independently developed a theoretical 
model to assess the motion of the system with 
a somewhat different philosophy. We expect our 
model analysis to be sufficiently general to ac- 
count, amongst other, for the just  mentioned fine 
structure details, but further expansion is still re- 
quired, as we are at the moment  only in the first 
stages of its development. In what follows, we ex- 
plain the main ideas underlying our model, as well 
as some of the preliminary results already found. 
Particularly interesting amongst these is a new 
proposal we make for a quasi spherical, polyhedric 
antenna with remarkably complete potentialities 
as a GW detector, as it can also be operated as a 
multi frequency device. 

2. G E N E R A L  E Q U A T I O N S  

We shall be assuming that a solid elastic sphere 
of mass M and radius R is endowed with a set of 
N transducers, attached to its surface at loca- 
tions XA, (A = 1,...,N). The transducers will be 
modelled as identical simple harmonic oscillators, 
each of mass Mt and resonance frequency ~.  If 
an external density of force f (x ,  t) is acting on 
the sphere then the equations of motion for the 
coupled system are [6] 

C92U 
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= f (x , t )  + t/Mfl2 × 
N 

× - - , , A  ( 1 )  

A=I 
= - ( 2 )  

where u(x, t )  is the field of sphere displace- 
ments, and ~a(t) the displacement of the A- 
th transducer relative to the undeformed sphere 
surafce; p, :X,/J are the density and elastic Lam~ 
coefficients, respectively, and I/= Mt/M. Al- 
though the external force f (x , t )  in (1) can be 
anything, we shall concentrate here on a GW exci- 
tation; for a general metric GW the driving term 
admits the decomposition [2] 

2 
f(x, t) = f(S)(x) 9(s)(t) + ~ f('~)(x) g('0(t)(3) 

m=--2 

where g(S)(t) is the monopole amplitude of the 
Riemann tensor, while g(m)(t) are its quadrupole 
amplitudes, f(S)(x) and f(m)(x) are tidal form 
factors. 

A formal solution to eqs. (1) can be written 
down in terms of Green functions [2], but it is 
so very complicated that symplifying assumptions 
ought to be made in order to extract valuable in- 
formation. First of all, the transducer mass is 
much smaller than the sphere's. It is therefore 
advantageous to find a solution as a perturbative 
expansion in t/, then retain a suitable number of 
terms in it for each specific purpose. Also, we 
shall be assuming that the transducer frequency 

is equal to one of the sphere's resonances wnl, 
normally a quadrupole or a monopole harmonic. 
It turns out after very lengthy algebra that, 
to lowest order in 7, there is a linear relation- 
ship between the driving terms [l(~)(s), a = S, m 
(m=-2,... ,2), and the system's response ~)a(s) 
given by the following equations: 

~A(8 ) ._ ~-112 ~ A(ACt)($; 'n, I) g(ot)(S) (4) 
Gt 

where YA (t) ==. ~A(t) --Ilia "U(XA, t). These equa- 
tions are written in terms of Laplace transforms, 
noted by circumflex accents on symbols, for expe- 
diency. A~)(s; n, I) is therefore a transfer func- 

tion matrix. The first thing which is readily vis- 
ible in (4) is that there is a mechanical enhance- 
ment factor t/-1/2 in the system response with re- 
spect to the GW amplitudes ~(a)(s), exactly the 
same as happens with bars. A deeper scrutiny of 
the equations requires precise specification of the 
matrix elements A(~)(s; n, I), of course. Lack of 
space in this short communication dictates that 
only a qualitative description be presented here. 

The information contained in A~a)(s;n, I) is 
this: i) its poles, relative to the Laplace variable 
s, determine the characteristic frequencies of the 
system, and ii) its specific form, for given n, l, de- 
termines the coupling to GWs; it is therefore a 
mode pattern matrix. We find the following, re- 
spectively: 

i) The system's characteristic frequencies are, 
for a general transducer distribution, a 
set of N doublets, practically symmetric 
around the chosen sphere's frequency w,I, 
given by 

(l ±bA (5) 

where ba are the eigenvalues of a certain 
matrix depending only on the positions of 
the transducers. Again, a remarkable par- 
allelism is found with the situation in bars: 
the splitting is symmetric around the solid's 
resonance, and its relative magnitude is pro- 
portional to v~" 

ii) The most important feature revealed by the 
mode pattern matrix is this: if we implant 
transducers which for example resonate at 
the first sphere quadrupole frequency, wa2, 
then we can only sense the quadrupole com- 
ponents of the driving force, 0(m)(s); the 
system will be (practically) insensitive to 
the monopole component 0(S)(s), even if it 
is large at the observation frequency. Like- 
wise, if ~=wl0 ,  the first monopole fre- 
quency, then the system will not sense the 
quadrupole amplitudes ~(m)(s), even if they 
are present in the signal at that frequency. 
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These facts have suggested us that a suitable 
distribution of transducers on the sphere's sur- 
face may be advantageously used to build a rather 
complete GW antenna. We describe our proposal 
in the next section. 

3. A N E W  P R O P O S A L  

As just described, a set of resonant transducers 
is only sensitive to the amplitudes of that par- 
ticular mode of the sphere to whose frequency 
the transducers are tuned. Interferences between 
modes are weak, if they are sufficiently sepa- 
rated in frequency. It is therefore very attrac- 
tive to make a design whereby several modes of 
the sphere can be sensed in parallel. These could 
be the first and second quadrupole, and the first 
monopole. The frequencies of these modes are 
in the ratios 1/1.92/2.05, respectively, so quite 
clearly separated. 

The choice is not gratuitous: the second 
quadrupole cross section for GW energy absorp- 
tion is still large --cf. [1]--, while, on the other 
hand, almost every theory of the gravitational 
field, other than General Relativity, predicts the 
existence of scalar radiation, thence the use of a 
monopole mode sensor should contribute valuable 
experimental evidence for or against the hypoth- 
esis of such kind of radiation. 

The next question is naturally where to place so 
many transducers: 11 would be needed, as there 
are two quadrupole, five-fold degenerate, modes, 
and one monopole, non-degenerate, mode in the 
above proposal. We have considered substituting 
the sphere by a suitable polyhedron, following the 
philosophy of Johnson and Merkowitz of ease of 
mounting and manipulation. After looking at a 
number of different alternatives, we have found 
a very appealing one in the so called pentago- 
nal hezacontahedron. This is a sixty face convex 
body, whose faces are all identical, though irreg- 
ular, pentagons. It has six axes of quintuple sym- 
metry, like the icoshedron, but it is much more 
close to the sphere in volume and area. Finally, a 
sphere can be inscribed in this polyhedron, which 
is tangent to all faces at a certain centre of the 
face. If transducers are attached to such centres, 
they will all be equidistant from the centre of the 

sphere - - a  very good simulation of the theoretical 
sphere. 

In Figure 1, we give a schematic graphical rep- 
resentation of our proposed device, see the cap- 
tion for details. The concrete choice for the 
positions has been established in terms of the 
best possible equanimity of sensitivity to all five 
quadrupole amplitudes ~(m)(s), i.e., in such a way 
that signal-to-noise ratios for all these modes are 
as close as possible to one another. Details of 
this and other questions will be given shortly in 
a journal paper. 

i i" 
~:: 

Figure 1. The proposed polyhedric antenna. 
Transducers are marked as follows: a square for 
the first quadrupole frequency, a triangle for the 
second, and a star for the monopole. 
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